Telegram Group & Telegram Channel
📄 Scaling Laws for Native Multimodal Models

📌 Исследователи из Sorbonne и Apple проанализировали 457 мультимодальных моделей, чтобы понять, как масштабируются нативные мультимодальные архитектуры (NMM) — обученные с нуля, а не через “приклейку” vision-энкодеров к LLM.

🔍 Главное:
Late-fusion (классика с vision encoder + LLM) ≠ обязательно лучше.
Early-fusion модели, в которых всё учится совместно с нуля — обгоняют по качеству при меньшем количестве параметров, обучаются быстрее и проще в продакшене.
Добавление Mixture of Experts (MoE) даёт прирост — модели учат модальность-специфичные веса, сохраняя ту же цену инференса.
Scaling laws (законы масштабирования) у NMM — почти те же, что у LLM. Можно планировать бюджеты и рост моделей аналогично.

⚠️ Ограничения:
— Пока неясно, как точно это поведение переносится на downstream-задачи.
— Нужно больше экспериментов с разными пропорциями мультимодальных данных.
— Для early-fusion на высоких разрешениях нужны новые подходы к работе с токенами (контекст, пуллинг и т.д.).

📎 Вывод:
Early-fusion — не просто рабочий вариант, а оптимальный выбор для мультимодальных моделей при ограниченных ресурсах. Отказ от “склеек” делает обучение проще, быстрее и дешевле.

Читать

#ai #multimodal #scalinglaws #moe #llm #mlresearch #arxiv



tg-me.com/machinelearning_interview/1714
Create:
Last Update:

📄 Scaling Laws for Native Multimodal Models

📌 Исследователи из Sorbonne и Apple проанализировали 457 мультимодальных моделей, чтобы понять, как масштабируются нативные мультимодальные архитектуры (NMM) — обученные с нуля, а не через “приклейку” vision-энкодеров к LLM.

🔍 Главное:
Late-fusion (классика с vision encoder + LLM) ≠ обязательно лучше.
Early-fusion модели, в которых всё учится совместно с нуля — обгоняют по качеству при меньшем количестве параметров, обучаются быстрее и проще в продакшене.
Добавление Mixture of Experts (MoE) даёт прирост — модели учат модальность-специфичные веса, сохраняя ту же цену инференса.
Scaling laws (законы масштабирования) у NMM — почти те же, что у LLM. Можно планировать бюджеты и рост моделей аналогично.

⚠️ Ограничения:
— Пока неясно, как точно это поведение переносится на downstream-задачи.
— Нужно больше экспериментов с разными пропорциями мультимодальных данных.
— Для early-fusion на высоких разрешениях нужны новые подходы к работе с токенами (контекст, пуллинг и т.д.).

📎 Вывод:
Early-fusion — не просто рабочий вариант, а оптимальный выбор для мультимодальных моделей при ограниченных ресурсах. Отказ от “склеек” делает обучение проще, быстрее и дешевле.

Читать

#ai #multimodal #scalinglaws #moe #llm #mlresearch #arxiv

BY Machine learning Interview













Share with your friend now:
tg-me.com/machinelearning_interview/1714

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Find Channels On Telegram?

Telegram is an aspiring new messaging app that’s taking the world by storm. The app is free, fast, and claims to be one of the safest messengers around. It allows people to connect easily, without any boundaries.You can use channels on Telegram, which are similar to Facebook pages. If you’re wondering how to find channels on Telegram, you’re in the right place. Keep reading and you’ll find out how. Also, you’ll learn more about channels, creating channels yourself, and the difference between private and public Telegram channels.

What is Telegram?

Telegram is a cloud-based instant messaging service that has been making rounds as a popular option for those who wish to keep their messages secure. Telegram boasts a collection of different features, but it’s best known for its ability to secure messages and media by encrypting them during transit; this prevents third-parties from snooping on messages easily. Let’s take a look at what Telegram can do and why you might want to use it.

Machine learning Interview from kr


Telegram Machine learning Interview
FROM USA